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A B S T R A C T   

This study unites six popular machine learning approaches to enhance the prediction of a molecular binding 
affinity between receptors (large protein molecules) and ligands (small organic molecules). Here we examine a 
scheme where affinity of ligands is predicted against a single receptor – human thrombin, thus, the models 
consider ligand features only. However, the suggested approach can be repurposed for other receptors. The 
methods include Support Vector Machine, Random Forest, CatBoost, feed-forward neural network, graph neural 
network, and Bidirectional Encoder Representations from Transformers. The first five methods use input features 
based on physico-chemical properties of molecules, while the last one is based on textual molecular represen-
tations. All approaches do not rely on atomic spatial coordinates, avoiding a potential bias from known struc-
tures, and are capable of generalizing for compounds with unknown conformations. Within each of the methods, 
we have trained two models that solve classification and regression tasks. Then, all models are grouped into a 
pipeline of two subsequent ensembles. The first ensemble aggregates six classification models which vote 
whether a ligand binds to a receptor or not. If a ligand is classified as active (i.e., binds), the second ensemble 
predicts its binding affinity in terms of the inhibition constant Ki.   

1. Introduction 

Initial stages of drug discovery require localization of what causes a 
disease, understanding of the molecular mechanism, then suggesting 
and testing drug leads. After a disease target has been identified, a list of 
drug candidates is drafted and screened for the target-candidate affin-
ities, also known as a drug-target binding affinity (DTBA). DTBA reflects 
the strength of an interaction between targets and ligands. In particular, 
it can be quantified by the inhibition constant Ki. The smaller Ki value is, 
the stronger the ligand obstructs the target active site, and the greater 
therapeutic effect can be achieved with the lower dose of the drug. There 
is a large variety of experimental methods for measuring DTBA but they 
are costly in terms of human efforts, time, and resources. Thus, 
computational approaches are needed to help shrink the pool of in vitro 
tests by eliminating weakly scored candidates. One of such techniques is 
molecular docking (Shoichet et al., 2002; Pagadala et al., 2017; de 
Azevedo, 2019) that explores a binding conformational space between 
different molecules and solves the task of optimal docking 

conformations. The estimated binding energies during docking sce-
narios might not be predictive because docking modes with low esti-
mated binding energies not always correspond to the experimentally 
observed binding modes (Frimurer et al., 2003). It is worthy of note that 
molecular docking might suffer from imprecise detection of ligand 
spots/poses or even dock completely inactive compounds (Chen, 2015). 
Along with classical force field simulations and molecular docking, 
machine learning (ML) techniques became a powerful tool in the field of 
virtual screening. One of the pioneering studies in machine learning 
methods for binding affinity prediction is reported by King et al. (1995) 
where the performances of the feed-forward neural networks, k-Nearest 
Neighbors, and Decision Trees models are compared on the set of about 
200 ligands and two target receptors. The list of ligand descriptors there 
includes molecular size, flexibility, polarity, polarizability, numbers of 
donors/acceptors, etc. Jorissen and Gilson (2005) rated compounds by a 
DTBA using Support Vector Machine approach. Their dataset consisted 
of several hundreds of ligand-receptor pairs. More than 500 molecular 
descriptors were generated but only ≈50 of them were used – the ones 
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with the highest discrimination scores. The importance of the feature 
selection is also highlighted in a study by Yugandhar and Gromiha 
(2014) that focuses on the protein-protein binding affinity. 

A concept of the interaction-averaged space is presented in a study 
by Li et al. (2019a). In this study a set of 439 features is suggested for the 
multi-receptor active/inactive ligand binary classification: 107 features 
describe receptors, 166 features are MACCS fingerprints (Durant et al., 
2002) that describe ligands, the rest 166 features are fingerprints 
averaged over ligands within the same receptor. The method of choice 
there is Bayesian Additive Regression Trees, while the following ap-
proaches are used as a baseline: Support Vector Machine, Random 
Forest, Decision Trees, and Logistic Regression. The authors report the 
accuracy of ≈95% on the binary classification to actives or inactives. A 
similar concept of the interaction-averaged space is also used in a study 
by Heck et al. (2017) who built a number of regression models for DTBA 
over an aggregated scoring space. This space is based on ligand scores 
that are averaged in a per-receptor manner. 

It is worth to mention a number of papers (Pahikkala et al., 2014; He 
et al., 2017; Öztürk et al., 2018, 2019; Nguyen et al., 2020; Shim et al., 
2021) by different research groups, but benchmarking on the same 
datasets (Davis et al., 2011; Tang et al., 2014) that cover a niche of ki-
nases. In particular, the prediction in KronRLS (Pahikkala et al., 2014) is 
based on a similarity score for each drug-target pair where the similarity 
of drug-target pairs is defined through the Kronecker product of 
drug-drug and target-target similarity matrices. Given a set of the 
among-drugs and among-targets similarities, SimBoost (He et al., 2017) 
uses gradient boosting to predict DTBAs and yields MSE of 0.28 on the 
Davis dataset (Davis et al., 2011). A deep neural network for the DTBA 
prediction DeepDTA (Öztürk et al., 2018) takes the receptor’s FASTA 
(Lipman and Pearson, 1985; Pearson and Lipman, 1988) and ligand’s 
SMILES (Weininger, 1988; Weininger et al., 1989) strings as inputs, 
encodes, and zero-pads them. The encodings are passed through two 
separate convolutional networks, concatenated, and sent to fully con-
nected layers, yielding binding affinity. DeepDTA achieved MSE in the 
range of 0.26–0.66 (depends on the encoding setup) on the Davis 
dataset. WideDTA (Öztürk et al., 2019) uses four textual inputs: the 
protein sequence, ligand SMILES, protein domains and motifs, and 
maximum common substructure words to predict DTBA. These inputs 
are fed into four separate sleeves with convolutional layers, concate-
nated, and passed through a set of fully connected layers to predict a 
DTBA value. The model scored MSE of 0.26 on the Davis dataset. The 
GraphDTA approach (Nguyen et al., 2020) also relies on separate input 
sleeves – for ligand and receptor. The outputs of the sleeves are 
concatenated and regressed towards DTBA. The ligands are represented 
as graphs with atoms as vertices and bonds as edges. Four imple-
mentations of graph neural networks are tested for the ligand part, 
whereas the receptor is encoded from FASTA notation and processed by 
a set of convolution networks. The reported MSE values range from 0.23 
to 0.25 in pKd units from the Davis dataset. Similar to the KronRLS 
approach, SimCNN-DTA by Shim et al. (2021) is based on chemical 
similarities. In particular, for a given ligand-receptor pair two vectors 
are calculated: first one consists of Tanimoto similarities between mo-
lecular fingerprints of ligands, the second one – of Smith-Waterman 
similarities between FASTA sequences of receptors. The outer product 
of these two vectors constitutes a 2D matrix, which serves as an input for 
a 2D convolutional network to predict binding affinities. SimCNN-DTA 
is benchmarked on both Davis and KIBA datasets, showing equal or 
better performance, than the studies from this paragraph. 

A study by Kundu et al. (2018) compared a performance of a number 
of ML methods (Random Forest, Support Vector Machine, Gaussian 
Process, feed-forward neural network) on DTBA prediction on the 
PDBbind (v.2015) dataset. Within all the considered approaches, the 
receptors and ligands were featurized with a set of structural and 
physico-chemical properties, constituting a single input vector per 
receptor-ligand pair. The predicted outputs were Ki and Kd values. A 
feature engineering and fine-tuning of the models revealed the best 

prediction results were achieved with the Random Forest approach. 
DGraphDTA approach (Jiang et al., 2020) uses a structural infor-

mation of molecules and proteins. Two graphs for drug molecules and 
proteins are built up respectively, regressing to predict DTBAs. Notably, 
protein graphs are constructed out of the protein contact maps which are 
predicted from FASTA sequences by a contact predictor PconsC4 
(Michel et al., 2018). 

Jiménez and co-authors (Jiménez, Škalič et al., 2018) introduced 
Kdeep – a three-dimensional convolutional neural network (3D-CNN) for 
DTBA prediction. Each protein and ligand pair is featurized via a 
voxelized 24 Å representation of the binding site, characterizing each 
voxel by eight pharmacophoric-like properties. The authors achieved 
root mean square error (RMSE) of 1.27 in pK units between 
experimental and predicted DTBA on the standard PDBbind (v.2016) 
core test-set. DeepAtom (Li et al., 2019b) is another 3D-CNN framework 
that extracts binding-related atomic interaction patterns from the 
voxelized complex structure. With the Astex Diverse dataset (Hartshorn 
et al., 2007) as training set, DeepAtom achieves RMSE of 1.23 in pK units 
on the PDBbind (v.2016) as a test set. 

A study by Kwon et al. (2020) discusses an approach for DTBA 
prediction based on the ensemble of 3D-CNNs. The ensemble has the 
lowest accuracy metric values with mean absolute error (MAE) of 
1.01 kcal/mol and an RMSE of 1.29 kcal/mol. Using the ensemble of the 
networks improved a prediction quality by 0.1 kcal/mol as compared to 
a single network performance. Ensemble of Random Forest, AdaBoos-
tRegressor, Gradient Boosting Regressor, and feed-forward neural 
network models by Chen et al. (2019) predicts activities of peptide 
ligands to several tumor-related proteins. Chen et al. (2019) reported 
quite high coefficients of determination R2 of 0.81/0.9 on the train-
ing/test set and, as an additional validation step, performed a set of 
computer simulations for selected protein-ligand pairs. However, the 
selected ligands did not reveal an expected strong attachment. An in-
tegrated approach that uses ligand docking on multiple structural en-
sembles to reflect receptor flexibility is proposed by Schneider et al. 
(2019). The approach unites the ligand docking stage with the stage of 
DTBA prediction for a docked complex by engaging a Random Forest 
model. To enrich the regression solution, various sets of descriptors are 
examined for effectiveness. 

Since their introduction Transformer-like neural networks have been 
successfully adopted for mapping the raw chemical sequences to rep-
resentations of biological functions and properties. In a study by 
Schwaller et al. (2019), self-attention models are used for the task of 
predicting the products of chemical reactions formulated as a machine 
translation problem between SMILES strings of reactants, reagents, and 
the products. Payne et al. (2020) analyze applications of BERT model 
and its attention to learn useful contextualized representations of 
chemical compounds that are used for problems of toxicity, solubility, 
drug-likeness, and synthesis accessibility prediction. In study by Rives 
et al. (2019), encodings of protein sequences are learned by BERT model 
from a large-scale unlabeled dataset and thoroughly tested on the sub-
ject of encoding diverse protein aspects. MT-DTI model (Shin et al., 
2019) combines the sequence modelling capacities of two representa-
tion learners – CNNs for FASTA and self-attention mechanisms for 
SMILES for the task of DTBA prediction. Such coupling of neural ar-
chitectures allowed it to achieve state-of-the-art results on the 
above-mentioned KIBA and Davis datasets. 

In the last two years, a special attention is also paid to the search of 
effective inhibitors against SARS-CoV-2-related receptors. The epidemic 
pace of the infection spread urges the use of ML methods as fast and 
lightweight approaches to screen millions of compounds (see, for 
example, a recent review by Mottaqi et al. (2021)). A gradient boosting 
regression approach is discussed by Gao et al. (2020) where active in-
hibitors against the SARS-CoV-2 3CL protease (Jin et al., 2020) are 
sought from a list of FDA approved drugs. As the protease is the single 
receptor in this task, there is no need to parameterize it. With the 
training set of 314 inhibitors, the ligands were parameterized with a 
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consensus of three kinds of fingerprints. A study by Nand et al. (2020) 
adopted a multistage pipeline uniting activity classification, 
drug-likeness filtering, docking, and binding affinity predictions to 
search inhibitors against the protease. Since a single-receptor approach 
was considered, only ligands were featurized with a set of descriptors 
and served as inputs. Finally, selected inhibitors were simulated by 
molecular dynamics within the protease active site. Santana and Silva-Jr 
(2020) screened a list compounds from the ChEMBL database (Mendez 
et al., 2019) by a recurrent neural network to classify them for inhibitory 
action against the protease. The compounds predicted as active were 
further analyzed using molecular docking. Kowalewski and Ray (2020) 
suggested a pipeline to identify drug candidates against multiple 
SARS-CoV-2-related receptors with a special focus on a feature selection. 
The trained pipeline was further used to screen a list of thousands of 
known drugs and millions of purchasable chemicals for binding affin-
ities, toxicity, and volatility. The MT-DTI model by Shin et al. (2019) 
was applied to predict binding affinities of known antiviral drugs to six 
SARS-CoV-2-related receptors (Beck et al., 2020). In a study by Kadioglu 
et al. (2021), known drugs and purchasable chemicals are examined for 
interaction ability with three receptors (spike, capsid, and transferase 
proteins) by means of an AutoDock Vina and ML combined approach. 

Concluding the introductory part, we would like to mention a recent 
review by Ellingson and co-authors (Ellingson et al., 2020) that discusses 
most popular machine learning approaches and emerging obstacles in 
studies of DTBA. Besides the typical problems with representations 
mentioned above, difficulties with datasets and data consistency are 
discussed. The quality of the binding affinity prediction might suffer 
from inconsistent data, affected by experimental noise. Notably, some of 
the discussed studies are focused on one certain receptor, thus, no re-
ceptor representation is needed in such approaches. Also, the use of 
multistage pipelines helps enrich a scope of predictions through a 
combination of task-specific solutions. 

2. Methods 

In this study, we evaluate six ML approaches with regard to their 
capability to predict molecular binding affinity. The approaches are 
wrapped into a pipeline with two subsequent ensembles, as outlined in 
the next subsection. We used the following methods: Support Vector 
Machine (SVM) (Cortes and Vapnik, 1995), Random Forest (RF) (Brei-
man, 2001), Catboost (Dorogush et al., 2018), feed-forward neural 
network (FFNN), graph neural network (GNN) (Scarselli et al., 2009), 
and Bidirectional Encoder Representations from Transformers (BERT) 
(Devlin et al., 2018). The first four approaches – SVM, RF, CatBoost, 
FFNN – use extended-connectivity fingerprints (Rogers and Hahn, 2010) 
in the ECFP4 formulation as inputs. The fifth approach – GNN – uses 
graph representations of ligands as inputs by treating atoms as graph 
nodes, whereas graph edges are bonds that connect atoms (nodes). 
Graphs with edge information (Beck et al., 2018) were proposed to 

extend the representation capability of the original GNN formalism 
(Scarselli et al., 2009). In our study, both the nodes and edges are 
ascribed with physico-chemical properties which distinguish different 
atoms and bonds (see Section 2.6 for more details) – a schematic graph 
representation for acetaldehyde molecule as an example is shown in 
Fig. 1. In contrast to the above approaches dealing with purely 
physico-chemical properties, BERT works directly with string repre-
sentations of ligands and thus discards the need for feature engineering. 
The mentioned methods are examined for the capability to predict 
binding affinities of various ligands to human thrombin, however, all the 
models can be retrained for a case of other receptors. Such a per-target 
paradigm is a common approach in ML applications for cheminformatics 
(see, for example, Gao et al. (2020), Nand et al. (2020), Santana and 
Silva-Jr (2020), Chupakhin et al. (2013)). 

2.1. Pipeline 

A principal scheme of the pipeline is shown in Fig. 2. It is comprised 
of two stages: the first stage decides whether a ligand is active or inac-
tive, then the second stage predicts the inhibition constants for active 

Fig. 1. An example ligand, acetaldehyde, residing in the human thrombin’s binding site. All ligands are represented as molecular graphs with nodes (atoms) and 
edges (bonds). Each node and edge is assigned with a set of features. 

Fig. 2. A scheme of the prediction pipeline with classification and regres-
sion ensembles. 

M. Druchok et al.                                                                                                                                                                                                                               



Computational Biology and Chemistry 93 (2021) 107529

4

ligands. The predictions within these two stages are interpreted in an 
ensemble-like manner by voting (for classification) and averaging (for 
regression) strategies. The modular structure within the ensembles al-
lows one to add or remove models and implement various ensembling 
scenarios. 

2.2. Support Vector Machine 

Support Vector Machine in a transformed feature space, viz. 
with Gaussian radial basis function (RBF) used as a dot-product kernel. 
SVM models were engaged in both classification and regression 
ensembles. In both cases, they were used as implemented in Scikit-learn 
library (Pedregosa et al., 2011). Due to the use of RBF kernelk(xi, 
xj) = exp(− γ ‖ xi − xj ‖

2) on feature vectors xi and xj with binary-valued 
components, the obtained model basically compared the input mole-
cules by similarity of their ECFP4 fingerprints at a bit-wise level. A 
regularization parameter C of the model was selected basing on the re-
sults of a grid search. The search revealed that the default value C = 1 is 
the optimal choice among the values 0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 
10.0, and 100.0 in terms of the highest accuracy metric. When training 
the model, class_weight = “balanced” option was set to account for the 
prevailing number of molecules with inactive class in the input dataset. 
For the regression task, the Epsilon-Support Vector Regression model 
was used, as implemented in the Scikit-learn library. 

2.3. Random Forest 

We use the Random Forest implementation from the Scikit-learn, as 
well. RF maintains internally the balance between active and inactive 
samples on the classification task by switching the class_-
weight = “balanced” option. At the initial stage, we applied a grid- 
search procedure to tune model hyper-parameters. During this optimi-
zation all combinations of the following parameter choices were tested: 
the number of trees in ensemble (n_estimators) – one of 200, 500, 1000, 
2000, the maximum depth of the tree (max_depth) – one of 2, 5, 7, 8, 10, 
the minimum number of samples required to split an internal node 
(min_samples_split) – one of 1, 2, 4, 8, 10, 20. A five-fold cross-validation 
was used to find the combination of parameters that yield the best 
averaged accuracy. As a result, parameter combination n_estima-
tors = 200, max_depth = 10, min_samples_split = 10 appeared the most 
appropriate. 

Regression setting was similar, but this time the mean squared error 
of the regression model was minimized within the five-fold cross-vali-
dation. As a result, the following parameter values were found optimal 
for regression: n_estimators = 2000, max_depth = 10, 
min_samples_split = 2. 

2.4. CatBoost 

This section describes the gradient boosting over decision trees 
approach. We used the CatBoost implementation (Dorogush et al., 2018) 
of this algorithm. The models were fitted on the ECFP4 fingerprints of 
ligands. Hyperparameters of the corresponding classification and 
regression models were firstly tuned by a grid search over the following 
grid: learning rate – 0.1, 0.03, 0.01; L2 leaf regularization – 1, 3, 5, 7, 9; 
maximum depth – 6, 8, 10. The metrics for choosing the optimal 
hyperparameters are the accuracy for classification and the MSE for 
regression, computed on the test set. As a result, the chosen set of 
hyperparameters for the classification task includes the learning rate of 
0.1, the L2 leaf regularization parameter of 3, and the maximum depth 
of 10. The same set of hyperparameters, except for the L2 leaf regula-
rization of 1, is used for the regression task. The evaluation metrics 
typically stopped to improve after about 200 epochs of training for 
classification and 500 epochs for regression. Early-stopping scenario 
was applied during the training with the patience parameter set to 100 
epochs. 

2.5. Feed-forward neural network 

This subsection describes the approach based on the formalism of 
feed-forward neural networks. Similar to the above methods, the FFNN 
inputs are ECFP4 fingerprints, thus, the size of the input layer is 2048 
neurons. Further, this input is passed to a set of custom fully-connected 
layers. During the optimization procedure, we tested various architec-
tures that varied the width and depth of the network, tested skip- 
connections, the ReLU, Softplus, and PReLU activation functions, and 
a set of training parameters, as well. Despite our expectation, the skip- 
connections did not improve the performance on both the classifica-
tion and regression tasks. In case of classification task, the final archi-
tecture consists of five layers total: input layer of size 2048, three hidden 
layers with corresponding 512, 256 and 64 neurons, and the output 
layer with 2 neurons. The activation function on the first, second, and 
third layer is ReLU. In the case of regression task, the architecture 
consists of five layers: the input layer is of size 2048, the hidden layers 
with 1024, 256 and 64 neurons, and the output layer with 1 neuron. The 
activation function between the layers is Softplus. The training is per-
formed by using Stochastic Gradient Descent technique with Adam 
optimizer and batch size of 32. During the training, we also used a 
learning rate scheduler that decreased the initial learning rate of 0.001 
every 50 training epochs by a factor of 0.9. On the classification task, the 
trained model was optimized with the cross entropy loss, while the best 
model was chosen according to the best accuracy score on the test 
subset. On the regression task, the MSE was used as the optimization 
loss. The model with the lowest MSE on the test subset was chosen as the 
optimal one. 

2.6. Graph neural network 

As we have already stated, the representations of ligands within the 
GNN approach are constructed in form of molecular graphs. Here we 
used the AttentiveFP GNN (Veličković et al., 2017; Xiong et al., 2020) in 
the DGL-LifeSci implementation (https://lifesci.dgl.ai/) for both the 
classification and regression tasks. The philosophy of Attentive FP is 
based on the message passing between nodes and extracting non-local 
effects: the node state vectors are processed by attentive layers that 
allow atoms to progressively aggregate state features from neighbors 
and propagate their features back to neighbors. Thus, the individual 
atomic states contribute to a molecular state vector. The output of 
Attentive FP is passed to a fully connected layer with two or one neuron 
(s) for either classification or regression tasks. Here we list some of the 
architecture parameters: node and edge feature sizes were set to 27 and 
12 (being equal to the WeaveAtomFeaturizer and WeaveEdgeFeaturizer 
sizes), the number of layers in Attentive FP – to 2, the graph feature size 
– to 200, the number of readout timesteps – to 2, and the dropout rate – 
to 0.2. The entire network is trained in an end-to-end manner by using 
the Adam optimizer for gradient descent technique with the batch size of 
30, L2 regularization rate of 0.0002, and early stopping callback with 
patience of 40 epochs. As in the case of feed-forward NN, the initial 
learning rate of 0.001 was gradually decreased by a factor 0.9 every 10 
epochs during the training routine. On the classification task, we used 
the focal loss (Lin et al., 2020) to optimize the trained model and to pick 
the one with the best accuracy score on a test subset. On the regression 
task, MSE was used for both optimizing and picking the best model. 

2.7. Bidirectional Transformers 

This subsection presents the Transformer-based approach to the 
DTBA prediction. We chose BERT (Devlin et al., 2018, 2019) as the 
representation learner because it attends both to left and right contexts 
when constructing token representations, which is crucial to fully cap-
ture the intricate inter-dependencies in chemical structures. BERT 
training routinely consists of two stages. The first stage – pre-training on 
large-scale unlabeled dataset with the masked language modeling 
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objective – predicts the randomly masked token(s) in a sequence. The 
second stage – fine-tuning on the particular downstream task with the 
corresponding labeled (small) dataset and tailored for this task super-
vised learning loss function. 

For the classification task, the BERT architecture is as follows: 4 
layers, 12 self-attention heads, hidden size 768. For each input token 
from tokenized SMILES string, its embedding is constructed by summing 
learnable token and position embedding. Pre-trained weights were 
taken from Wolf et al. (2019) where they had been optimized on about 
155 000 SMILES sequences from the PubChem database (Kim et al., 
2019). Maximal sequence length was set to 128, vocabulary was con-
structed via BytePair encoding and its size is ≈52 000. During the 
fine-tuning stage, we experimented with several loss functions. The best 
accuracy and precision/recall tradeoff were achieved with the weighted 
focal loss for gamma of 2 and alpha of 0.81. To weaken the overfitting 
and aid in better generalization during the training, the dropout of 0.3 in 
BERT was applied to the input embeddings, attention probabilities, and 
hidden states outputted by each layer of the model. 

The regression setting differs from the classification one in terms of 
the model scale – we used smaller BERT architecture with 3 layers, 6 
attention heads, hidden size 768, and vocabulary size 2229. Pre-trained 
weights for such configuration were also taken from Wolf et al. (2019) 
that had been optimized on about 400 000 SMILES sequences from the 
ChEMBL (Mendez et al., 2019) database. 

Training for both models was run over 8 and 14 epochs respectively, 
with the batch size of 32. The learning rates of 9 ⋅ 10− 6 and 1 ⋅ 10− 4 for 
the classification and regression respectively, were linearly decreased 
over the course of training with warm up steps proportion 0.06, pa-
rameters of the models were updated by Adam optimizer. 

3. Data 

A number of publicly available datasets provide data for inhibition 
constants Ki, as well as for a classification to active/inactive ligands 
towards different receptors. The inhibition constant Ki reflects how 
potent an inhibitor is: it is the concentration of a ligand in solution, 
required to produce half-maximum inhibition of a target receptor. Thus, 
the lower Ki is, the stronger (more active) inhibitor is, and vice versa. 
There is no strict threshold for the inhibition constant discriminating 
active and inactive ligands, however, Ki of 10 000 nM is often used as 
such a delimiter (He et al., 2017; Öztürk et al., 2019; Kowalewski and 
Ray, 2020; Shim et al., 2021; Rampogu et al., 2018). 

Because our pipeline consists of the classification and regression 
ensembles, we prepared two datasets to train the corresponding models. 
The classification and regression datasets were both combined out of 
three databases: BindingDB (Gilson et al., 2016), DUD-E (Mysinger 
et al., 2012), and ChEMBL (Mendez et al., 2019). Ligands were repre-
sented with the SMILES string notation, during pre-processing they were 
canonicalized with RDKit (http://www.rdkit.org) with the isometry 
information removed. 

We collected ≈30 000 ligand samples of two activity classes with 
respect to human thrombin which constituted our classification dataset. 
The fractions of active and inactive ligands are 18% and 82%. A ligand 
was considered inactive if any of the affinity records for it (Ki, Kd, IC50, 
EC50) had value >10 000 nM. If there were any conflicting labels for the 
same ligand in different databases, the bind class as indicated by the 
majority was prescribed (if it was impossible to yield the majority, the 
ligand was dropped from the dataset). During the training, we used a 
five-fold validation of the classification models and kept the same train- 
test split for all of them. A special attention was paid here to maintain 
the constant 18%/82% ratio of actives to inactives all over the folds. The 
fixed five-fold split assures that all models are tuned and compared on 
the same footing, while the constant rate between actives and inactives 
guarantees that all folds are equally populated with both classes. 

The collected dataset for regression consists of ≈4000 unique ligand 
samples with corresponding values of inhibition constants. Only records 

with the precise values of Ki were included in the dataset. If there were 
several different values of Ki for the same ligand, the value with the 
biggest count was taken (or median if all counts were equal). An addi-
tional filtering rule for regression samples originates from the pipeline 
construction: the regression ensemble comes into play only if the clas-
sification one claims a ligand active. Therefore, on the regression task 
we need to predict Ki values only within the “active” range and filter out 
the samples with high inhibition constants. As a result, the labels in 
regression dataset lie within the range of Ki ∈ [0 : 30 000 nM]. A slight 
exceed of Ki range over 10 000 nM is aimed to allow the regression 
models to predict the inhibition constants for very weak inhibitors. In 
concentration measurements the error increases proportionally to the 
concentration itself, therefore, it is convenient to work with decimal 
logarithm of inhibition constants log10Ki. Such a conversion helps bal-
ance error contributions to the loss function at different concentration 
ranges. The histogram showing the distribution of samples with log10Ki 
values is shown in Fig. 3, where Ki’s are expressed in nanomoles. Similar 
to the classification case, the regression dataset was split into five folds. 

We also considered several ways to augment the data. Commonly 
used tricks of SMILES augmentations include various alternative anno-
tations, but all of them would be dropped during the canonization pre- 
processing. Moreover, both the ECFP4 fingerprints and molecular 
graphs are invariant with regard to those permutations. Therefore, we 
proceeded with the above-mentioned dataset with no further 
augmentations. 

As we highlighted in the introduction, the feature engineering for the 
DTBA prediction is often a subject of thorough investigation. The ligands 
in our study are encoded in three principally different ways. The first 
way – utilizing ECFP4 fingerprints – is used in Support Vector Machine, 
Random Forest, CatBoost, and feed-forward neural network approaches. 
We generated these fingerprints with RDKit. The second way creates 
molecular graphs which are used in the graph neural network approach. 
The third way tokenizes the textual SMILES notations within the BERT 

Fig. 3. Normalized distribution of binding affinities log10Ki within the regres-
sion dataset. The Ki units are nanomoles. 

Fig. 4. Normalized distributions of molecular weights of compounds within the 
classification (shown in red) and regression (green) subsets. 
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approach, therefore, no extra pre-processing is needed – BERT digests 
SMILES directly. None of these featurizations use spatial coordinates, 
which was one of our essential requirements. Such a coordinate-free 
formalism allows one to predict binding affinities for novel ligands 
with unknown conformations. 

Having two subsets, it is important to characterize their composition 
and diversity. The more diverse subset is, the wider chemical subspace it 
covers, and the broader knowledge to ML it brings. The simplest mea-
sure of such diversity might be a distribution of molecular weights of 
compounds within both subsets, which we present in Fig. 4. The dis-
tribution for the classification subset is mainly localized within the 
range of [300:500], while the plot for the regression subset demon-
strates a broader shape with a solid representation of compounds with 
molecular weights above 500. To remind the reader, the regression 
subset consists of compounds which bind to the receptor, while the 
classification subset includes both binding and non-binding examples. 
Probably, one might attribute the “heavier” composition of the regres-
sion subset to a presence of certain molecular fragments necessary for 
binding. No specific structural requirements are imposed on non- 
binding compounds from the classification subset. To continue the 
analysis, we also made a split onto molecular fragments according to a 
recipe suggested by Ertl (2017). We already used this approach in 
Druchok et al. (2021) to characterize compounds belonging to different 
subsets. Such differences for the top populated fragments within the 
classification and regression subsets are shown in Fig. 5, where the 
fragments in a pseudo-SMILES notation are listed over the X-axis and the 
Y-axis denotes the corresponding percentages. 

Before proceeding with the next section, we also wanted to discuss 
molecular graphs in more detail. In general, it is expected that the key 
interactions among nuclei and electrons in a molecule can be implicitly 
captured by a graph and provide a source of insight into the functions 
and properties of the molecule. Moreover, as for many drug discovery 
applications, an active conformation of a small molecule upon binding 
can be unknown, thus, graph-based molecular representations are more 
suitable than spatial coordinates. 

To encode a molecular graph, node (atom) and edge (bond) features 
need to be defined. For this purpose we used Weave atom and bond 
featurizers (Kearnes et al., 2016) that produce a total of nine types of 
atomic features and three types of bond features to characterize atoms 
and their local environment. The atomic features are – atom type (‘H’, 
‘C’, ‘N’, ‘O’, ‘F’, ‘P’, ‘S’, ‘Cl’, ‘Br’, ‘I’, ‘other’), formal and partial charges, 
chirality, aromaticity, sp hybridization, capability of being a hydrogen 
bonding donor or acceptor, and ring size. The bond features – bond type 
(‘single’, ‘double’, ‘triple’, or ‘aromatic’), distance within the graph, and 
belonging to same ring. Most of these features are encoded in a one-hot 
manner, except for charges and the number of rings an atom belongs to, 

being integers due to their additive nature. 

4. Results 

4.1. Classification 

In this part, we analyze the performance of the classification models 
by a five-fold validation. We decided to compare the models on a set of 
scores which include accuracy, precision, recall, area under the receiver 
operating characteristic curve (ROC AUC), and average precision. Thus, 
each of the models was retrained five times, yielding five models and 
five sets of metrics. The means over folds of these metrics are presented 
in Table 1. We do not discuss the different arrangement of methods 
within these “leaderboards”, rather present them for the reference 
purposes. In our view, the most important score here is the precision 
because it relies on true and false positives – only positives (either true 
or false) are passed to wet-lab experiments. Thus, the “leaders” in the 
precision race are CatBoost (with 0.87), FFNN (0.85), and SVM (0.84) 
which briefly resemble the list of accuracy successors. 

4.2. Regression 

Here we compare the performance of the regression models. Table 2 
lists averaged scores of mean squared error, mean absolute error, and 
coefficient determination R2. As one can notice, the list of regression 
“leaders” differs from the classification list: the lowest errors and the 
highest R2 scores are achieved within the SVM approach, then followed 
by CatBoost, GNN, and FFNN. The weakest scores are demonstrated by 
RF and BERT. 

In addition to the performance scores on the regression task, we 
decided to illustrate the reconstruction quality on one of the test folds. 
This can be done by plotting the predicted log10Ki values versus exper-
imental ones, so the ideal reconstruction is achieved if such a relation fits 
the y = x function. In Fig. 6, six separate plots show the reconstruction 
for each of the methods. One can see the overall tendency across the 
methods: the predictions are rather cloud-shaped around the ideal 
reconstruction y = x, while the quality of prediction worsens at the ends 
of the interval. This can be attributed to the data distribution: the dataset 
has less samples for the very low and very high concentrations. Espe-
cially RF and FFNN seem to be prone to this issue – their bottom left and 
top right tails shift towards the moderate values. SVM, CatBoost, and 
GNN overcome this problem for the high concentrations, experiencing 
the shift only for the low concentrations. BERT is the least affected 
method, however, shows a high scatter of the predicted data around the 

Fig. 5. Distributions over molecular fragments in compounds belonging to the 
classification (shown red) and regression (green) subsets. 

Table 1 
Performance metrics of the methods on the classification task. Presented accu-
racy, precision, recall, area under the receiver operating characteristic curve 
score, and average precision score are means over five folds.   

SVM RF CatBoost FFNN GNN BERT 

Accuracy 0.95 0.93 0.94 0.95 0.88 0.87 
Precision 0.84 0.80 0.87 0.85 0.80 0.69 
Recall 0.91 0.82 0.77 0.86 0.45 0.55 
ROC AUC 0.98 0.97 0.97 0.91 0.94 0.90 
Average precision 0.89 0.83 0.87 0.76 0.75 0.70  

Table 2 
Performance scores of the methods on the regression task. Mean squared error 
MSE, mean absolute error MAE, and coefficient of determination R2 are aver-
aged over five validation folds.   

SVM RF CatBoost FFNN GNN BERT 

MSE 0.56 0.71 0.62 0.66 0.66 0.82 
MAE 0.55 0.65 0.59 0.60 0.59 0.66 
R2 0.74 0.66 0.71 0.69 0.69 0.61  
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y = x line. This observation agrees with a relatively low R2 coefficient of 
0.61 for BERT. 

4.3. Voting and averaging 

We have already discussed the performance of the considered 
methods if they act separately. Next, we proceed with ensembling of the 
methods to correct their individual errors and increase the confidence on 
combined predictions. It is worth reminding the reader, our study fo-
cuses on the application of the ML methods to the high-throughput 
screening. Therefore, we are rather concerned about the prediction of 
positives – active ligands. The price for a false positive misclassification 
is much higher than the price for false negative because only the ligands 
predicted as active are further passed to the wet-lab experiments. Thus, 
to reduce the rate of erroneous positive classifications, we are going to 
engage an ultimately strict strategy: a ligand will be classified as active 
only if all the ensembled models vote it as active, otherwise a ligand will 
be claimed inactive. Naturally, such a scenario will increase the rate of 
false negatives (active ligands might be classified as inactive ones), 
however, it complies with the idea of selecting only confident pre-
dictions for the wet-lab stage. 

The suggested strategy succeeds, if the error distribution between the 
methods differs: less common errors produce less ensembled false pos-
itives. Thus, to quantify the ensembling performance, we need to assess 

the rates of overlaps on false positives over the methods. One can do this 
in terms of intersection over union (IOU) between lists of false positives 
FPA and FPB from methods A and B: 

Fig. 6. The reconstruction quality of the binding affinities log10Ki within different methods. The red lines denote the y = x bisector to guide the eye.  

Table 3 
Intersection over union on false positives.   

SVM RF CatBoost FFNN GNN BERT 

SVM – 0.72 0.36 0.51 0.32 0.53 
RF 0.72 – 0.32 0.42 0.30 0.63 
CatBoost 0.36 0.32 – 0.34 0.23 0.30 
FFNN 0.51 0.42 0.34 – 0.18 0.32 
GNN 0.32 0.30 0.23 0.18 – 0.30 
BERT 0.53 0.63 0.30 0.32 0.30 –  

Table 4 
Intersection over union on true positives.   

SVM RF CatBoost FFNN GNN BERT 

SVM – 0.88 0.86 0.92 0.61 0.81 
RF 0.88 – 0.82 0.84 0.60 0.80 
CatBoost 0.86 0.82 – 0.86 0.61 0.78 
FFNN 0.92 0.84 0.86 – 0.60 0.77 
GNN 0.61 0.60 0.61 0.60 – 0.59 
BERT 0.81 0.80 0.78 0.77 0.59 –  
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IOUAB(FP) =
FPA ∩ FPB

FPA ∪ FPB
(1)  

We present the corresponding IOUs for false positives in Table 3. One 
can distinguish there CatBoost and GNN as the most contributors to the 
error-exclusion, while the least contributors are SVM and RF. It is worth 
noting that the conceptually different SVM and RF approaches show a 
relatively high mutual IOU of 0.72. 

Eq. (1) can be also rewritten for IOUs of true positives which we 
present in Table 4. The highest IOU on true positives of 0.92 is achieved 
for the SVM-FFNN pair, whereas the lowest IOUs of 0.59–0.61 – for the 
combinations of GNN with other methods. 

Of course, the interpretation of the results would be incomplete 
without discussion of the bare numbers on positives and negatives. The 
chosen test subset consists of 4949 inactive and 1097 active ligands. We 
apply the classification ensemble and claim ligands active only if all 
models classify them as active. Otherwise, ligands are claimed inactive. 
According to such voting scenario, we end up with only 24 false posi-
tives out of 4949. The number of true positives is 507 out of 1097. About 
a half of active ligands are misclassified as inactive, however, it is 
compensated by the extremely low rate of false positives and high pre-
cision score of 0.95. 

It is worth comparing the performance scores on the test subset with 
the corresponding numbers on the train subset. The train subset consists 
of 19,781 inactive and 4376 active ligands. The sieving by the classifi-
cation ensemble yields 11 false positives and 2354 true positives. Again, 
roughly a half of positives are correctly classified by all models, while a 
very low fraction of false positives is spotted. 

Next, we illustrate the performance within the regression ensemble. 
The test subset in this case consists of 796 ligands. Having six regression 
models, for each test ligand we did six predictions of log10Ki and then 
averaged them. Such averaged reconstruction is shown in Fig. 7. One 
can see that the cloud of ensembled predictions is thinner than the 
clouds of individual models (compare with Fig. 6). We also assessed the 
scores for averaged predictions, resulting in MSE of 0.54, MAE of 0.56, 
and R2 of 0.74. These scores are better than the ones from Table 2, that 
speaks in favor of the ensembled approach. For the sake of comparison, 
we also calculated the scores on ensembled predictions on the train 
subset, that yields MSE of 0.15, MAE of 0.29, and R2 of 0.93. 

Fig. 7. The reconstruction quality of the binding affinities log10Ki averaged 
over the ensemble of methods. The red line denotes the y = x bisector to guide 
the eye. 

Fig. 8. Distributions over molecular fragments in compounds belonging to the classification subset. Distributions for actives and inactives are used as a reference for 
the comparison with true negatives (top left), false positives (top right), false negatives (bottom left), and true negatives (bottom right) distributions. 
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4.4. Error analysis 

Having assessed the pipeline performance, we made an attempt to 
sort the errors. It is assumed that the characteristics and behaviour of 
substances are partially conditioned by their structure, thus, the chem-
ical similarity is often substituted by the structural similarity. On the 
other hand, as ML methods make use of data and, especially, of data 
similarities, one might assume that a prediction for a test ligand will be 
preferably determined by most similar ligands from a train subset. The 
ML models within both ensembles operate on different subsets, but take 
same inputs and have similar architectures. Therefore, we limited the 
analysis to the classification ensemble only, as the interpretation of er-
rors is more straightforward in this case. The idea here is to use active 
and inactive compounds from the classification train subset as refer-
ences for the comparison with true positives (TP), false positives (FP), 
false negatives (FN), and true negatives (TN) from the classification test 
subset. For this purpose we split the above-mentioned compounds onto 
molecular fragments (as we did for the analysis in Fig. 5) and grouped 
the corresponding distributions as shown in Fig. 8. The top left plot 
shows the distributions for the active (binding) and inactive (non- 
binding) compounds with distribution for the TP compounds. True 
positives are correctly classified binding compounds, thus, we expect 
this distribution to be similar to the distribution over active (binding) 
compounds. Indeed, one can see a good agreement between distribu-
tions for active (red bars) and TP (blue bars) compounds, while the 
distribution for inactives (green) significantly differs. The top right plot 
shows the comparison between reference distributions (actives and in-
actives) and false positives. False positives are inactive compounds 
misclassified as actives. If compared to the two references, the FP dis-
tribution reveals more similarity with the distribution for actives, not 
with the inactives distribution as it should be. The bottom left plot 
stands for false negatives – the active compounds misclassified as in-
actives. It is difficult to find a clear similarity pattern here. Probably in 
such uncertain cases the ensemble decision leans to declare compounds 
as inactives, since the classification subset is imbalanced in favor of 

inactive samples. The bottom right plot compares true negatives – 
correctly classified inactives. As expected, the TN distribution (blue 
bars) agrees with the distribution for inactives. 

Thus far we examined the similarity of compounds on the level of 
fragments. Although being good in catching of atomic sequences, this 
kind of analysis does not consider the molecules as a whole. An alter-
native approach here could be a comparison of molecular fingerprints 
(Baldi and Nasr, 2010; Bajusz et al., 2015; Lo and Torres, 2016) as they 
aggregate an information about presence or absence of particular sub-
structures on the molecular level. Various types of fingerprints can be 
used, as well as fingerprint-fingerprint distance criteria. Having ECFP4 
fingerprints already calculated, we used them for this purpose, while for 
a distance criterion we chose the Tanimoto similarity in the RDKit’s 
implementation. The Tanimoto similarity index varies within the range 
of [0:1] – the more similar chemical compounds are, the closer their 
similarity index approaches 1, and vice versa. Thus, for any compound 
from the test subset, one can bucketize train compounds by their Tani-
moto similarity with the test compound and average their bind classes. 
To remind the reader, we label active ligands with class 1 and inactives – 
with class 0. In Fig. 9 we show four typical examples of such 
class-similarity averages. The X-axis in the plots in Fig. 9 denotes a 
Tanimoto similarity between example test ligand and all ligands from 
the train subset. The Y-axis stands for the averaged bind class of 
neighbors. In some plots the red dots might appear irregularly in vicinity 
of similarity = 1, indicating the lack of train ligands with a certain value 
of similarity. The top left plot in Fig. 9 shows a distribution for one of the 
ligands correctly classified as active (true positive). Indeed, the expected 
class 1 coincides with the average over classes of similar ligands – see the 
plateau at value 1 for similarities above 0.7. The top right plot demon-
strates an example for a ligand with false positive prediction. Its actual 
class is 0, however, the majority of similar ligands voted for the class 1. A 
similar picture can be seen in the bottom left plot with an example of 
false negative prediction: an active ligand is misclassified because of the 
majority of similar train samples of the class 0. The bottom right plot 
shows a true negative example with clear prediction of the class 0. One 

Fig. 9. Averages over bind class of train ligands as a function of Tanimoto similarity with a test ligand. Four plots show typical examples for true negatives (top left), 
false positives (top right), false negatives (bottom left), true negatives (bottom right). 
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might conclude that predictions are mostly governed by train ligands 
with high similarity to the tested sample. Important to note, the above 
analysis is made over fingerprints, but other molecular representations 
are considered in the study, as well. We also wanted to remind the 
reader, the ML methods in hand mostly work in a non-linear fashion, so 
the plain average over bind classes here is rather a simplification, aimed 
to provide a qualitative interpretation. 

5. Summary 

Typical tasks of high-throughput screening might require billions of 
in silico experiments (Ton et al., 2020), thus, promoting the family of 
machine learning methods, as they are much faster than traditional 
simulation-based approaches. Here we present an ML-based pipeline for 
high-throughput screening of binding affinities between small organic 
molecules and proteins. The methods in hand are Support Vector Ma-
chine, Random Forest, CatBoost, feed-forward neural network, graph 
neural network, and Bidirectional Encoder Representations from 
Transformers. The pipeline unites two subsequent ensembles – classifi-
cation and regression. This two-ensemble setup is mostly motivated by 
the data-specific reasons – the majority of the binding affinity data 
comes as two-class records, while the data with binding strength is often 
imbalanced towards active ligands. Thus, the classification ensemble 
decides whether a particular ligand binds to a protein or not. We used an 
ultimate voting scenario – a ligand is claimed active (affine to a protein) 
only in case all models predict it as active. Such a strict rule is aimed to 
reduce the rate of false positives and, therefore, the number of wet-lab 
experiments with weakly scored ligands. If a ligand is recognized as 
active, it is then passed to the regression ensemble that predicts its 
binding affinity expressed as the inhibition constant log10Ki. The output 
of the second ensemble is the mean over six regression predictions. With 
classification followed by regression, not only drug candidate class 
(active/inactive) can be assessed, but also the strength of association. 
The inhibition constant is of the high interest for the pharma industry 
because it allows a selection of candidates with the highest estimated 
activity. 

The results of the study show that the two-ensemble pipeline makes 
use of all available affinity data, thus, reducing the error-rate and being 
fast enough for the high-throughput screening. We also demonstrate 
how the diversity of the methods allows one to exclude (on the classi-
fication) or compensate (on the regression) the errors made by their 
ensemble mates. We witnessed this in the Results section where the 
performance scores of individual models are weaker than the scores of 
ensembled predictions. The analysis of the errors concludes the Results 
section. The performance of the discussed pipeline is validated on the 
case of human thrombin, however, the whole scheme can be applied for 
other proteins, as well. 
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