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Abstract

Efficient design and screening of the novel molecules is a major challenge in drug and

material design. This paper focuses on a multi-stage pipeline, in which several deep

neural network models are combined to map discrete molecular representations into

continuous vector space to later generate from it new molecular structures with

desired properties. Here, the Attention-based Sequence-to-Sequence model is added

to “spellcheck” and correct generated structures, while the oversampling in the con-

tinuous space allows generating candidate structures with desired distribution for

properties and molecular descriptors, even for a small reference datasets. We further

use computer simulation to validate the desired properties in the numerical experi-

ment. With the focus on the drug design, such a pipeline allows generating novel

structures with a control of Synthetic Accessibility Score and a series of metrics that

assess the drug-likeliness. Our code is available at https://github.com/SoftServeInc/

novel-molecule-generation.
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1 | INTRODUCTION

Designing new materials is often a challenging, resourceful, and time-

consuming endeavor.1–3 In particular, drug development is a step-wise,

iterative process involving certain necessary stages: discovery and

research, development, regulatory approval, only then followed by pro-

duction and marketing. Typically, it takes from 10 to 15 years from initial

idea to a final approval and commercial distribution.4,5 Such a timeline is

mostly defined by difficulties with finding and evaluating appropriate drug

candidates that will successfully pass clinical studies. The material science

explored just a tiny piece of a space of potential compounds: it is esti-

mated that only about 108 of small drug-like molecules6 have been syn-

thesized so far out of more than 1060 possible ones.7 Today, synthesis of

new candidates requires increased investments in R&D studies,8 mainly

due to increased complexity of the search in this exponential space.

Lately, we witnessed the number of successful applications of

machine learning (ML) in many domains.9 While most of the interest

comes from advances in deep neural networks (DNNs) for speech rec-

ognition and computer vision, the universality of these methods in

learning the representations of data allows sufficient widening of the

areas of potential impact, including applications to scientific

problems.10,11

In this respect, chemical and pharmaceutical industries reveal a

substantial interest in ML approaches aiding on the increase in effi-

ciency of novel materials design.12–14 As a new milestone reached, it

is worth mentioning a recent study by Zhavoronkov et al15 reporting

an ML-driven development of inhibitor candidates in just 21 days,

which unprecedentedly shortens the preclinical phase.

1.1 | ML for material design

The material science operates on different levels of abstraction, from

the atomic scale to more coarse-grained ones, such as classical
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molecular or thermodynamic scales.16 This implies a different set of

computational and theoretical tools being used at each of them. Here,

recent advances in ML allow tackling multiple problems from the

approximation of complex functions or quantum wave-functions to

the prediction of properties, phase transitions, and temporal

dynamics.17–24

At the atomic level, DNNs are used to approximate quantum

mechanical computations, such as atomic/molecular parameters in all-

particle microscopic simulations,17,25 decomposing cluster energies or

predict next simulation step instead of CPU-costly traditional routines,

hence, speeding up the sampling.26–31 Recently, a few simulation

packages already incorporated these approaches into their computa-

tional tools.32–37

At the physical chemistry level, DNNs deal with the generaliza-

tion of more coarse-grained features.10 Quantitative structure-activ-

ity/property relationship (QSAR) models relate structure descriptors

of compounds with their physical/chemical properties, such as solu-

bility in water or organic solvents, melting point, solvation energies,

and so on.38–40 The latter ability to use ML for linking structure with

a property is interesting from biophysics and physiology perspectives

to address drug-likeliness and ADME (absorption, distribution,

metabolism, excretion) or ADMET (if Toxicity is also considered)

scores of a particular compound. In this case, the focus is on a set of

properties predicting binding affinity, biodegradability, and toxicity of

compounds.41–50 A kind of “golden standard” in drug-likeness

screening is a so-called the rule of five, suggested by a study of

Lipinski et al,51 or its close variations,52–55 allowing pharma-industry

considerably shrink a screening pool of drug-candidates at the dis-

covery stage.

In ML methods dealing with molecular structures, the crucial step

is the efficient representation of the structural data. The above-

mentioned approaches use different variations of input data: graphs,

fingerprints, descriptors, mixed fingerprint-descriptor models (see,

e.g., ref. [45]), one-line notations (such as SMILES—simplified molecu-

lar input line entry specification). Treating the latter string representa-

tions of molecules as a stand-alone language can unlock a substantial

number of possible applications of natural language processing

methods to chemistry-related problems, including the generation of

new compounds.56,57 In refs. [58, 59], SMILES strings are converted

into 2D structure images, and then fed into DNNs. A similar approach

to use 2D structure images as inputs is also exploited in ref. [60].

Methods based on graph neural networks (see, e.g., recent

reviews61,62 and the references therein) can directly exploit the graph

representation of molecules. Such representation is a natural choice

for studies of molecular structures, interactions, and synthesis.63 In

particular, graph convolution networks are under consideration in refs.

[63, 64], where molecular graphs are used to predict solubility, toxic-

ity, and other properties of compounds. Ref. [65] unites graph repre-

sentations with adversarial training and reinforcement learning to

guide the process of molecular design toward the outputs with

desired properties. Ref. [66] uses graph neural networks for protein

interface predictions. The study by Zitnik et al67 engages graph con-

volutional networks to model polypharmacy side effects by examining

multirelational drug-drug links. A generative network MolGAN for

molecular graphs is suggested in ref. [68].

Recent advances of Deep Learning to a large extent concern vari-

ous applications of generative adversarial networks (GANs) and other

examples of deep generative models able to generate or reconstruct

data from a given distribution.69,70 In the context of molecular data, this

opens a route for the synthesis of novel structures with given properties

(see, e.g., a review by Jørgensen et al71). In refs. [60, 72], the

autoencoder (AE) or variational autoencoder (VAE) architectures are

used to map discrete SMILES strings into a continuous space. A scan in

such space allows generating unseen structures that can be decoded

back to SMILES strings. In recent studies, a number of other deep gener-

ative models were explored to improve the quality of continuous repre-

sentations, reduce reconstruction errors, and assess the performance of

different models.71,73,74 A study introducing generative adversarial AE is

reported in ref. [75]—the authors tested different architectures for

structure generation and inverse QSAR mapping (sampling new struc-

tures with applied activity constraints). The detailed discussion on the

problem of “chemical space” and reconstruction from embeddings is

presented in a recent study of Bjerrum and Sattarov.76 A GAN-based

model by Guimaraes et al.77 adversarially learns to output SMILES

strings, optimizing them toward chemical metrics.

Note that, despite the continuous nature of the AE latent space

and infinite possibilities of choosing arbitrary latent vectors, not all

vectors correspond to proper SMILES strings. Some of these vectors

might decode to chemically incorrect SMILES strings, while others

(even “grammatically” correct) may correspond to unstable com-

pounds. A successful attempt to tackle this issue was made in ref.

[57], where the plain VAE is replaced with the Grammar VAE. The

main idea is to convert SMILES strings into parse trees from the

predefined context-free grammar and train the model on them. While

this setting substantially increases the number of valid SMILES strings

in the output, it does not spot the errors, which could not be identi-

fied without context (i.e., when a ringbond is not opened and closed

by the same digit, starting with “1”—like in benzene “c1ccccc1”57).
Ref. [78] extended the idea of SMILES grammar by enriching it with

attributes which add some context awareness to the model.

1.2 | Focus of this study

In the above subsection, we reviewed a current state of ML-assisted

approaches in cheminformatics, making an accent on the importance

of latent space representation, the issues with incorrect structures,

and property control of synthesized compounds, which are decoded

from the points in the latent space. These issues may become particu-

larly crucial when the reference datasets are small and the end-to-end

learning of the full pipeline is not possible.

This paper presents a practical multi-stage pipeline in which sev-

eral models are trained on specific tasks and large open datasets. We

introduce a number of pre- and postprocessing steps to enhance the

quality and success rate of generated molecules. Importantly, for the

generation task, this pipeline allows working with comparably smaller
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reference datasets. To this end, such a pipeline covers substantial part

of the early-stage drug discovery, from proposing a new structure to

predicting physical-chemical properties and confirming them in

numerical simulation (see Figure 1).

First, we use a common AE architecture allowing to map discrete

SMILES strings into continuous latent space.79,80 We show that the

size of the dataset plays a crucial role in achieving higher generaliza-

tion and reconstruction quality. As datasets with the labeled proper-

ties may often be of limited size, instead of end-to-end learning, we

train separate models on a number of tasks: reconstruction of struc-

tures, error correction, and prediction of properties.

To increase the number of valid generated structures, we intro-

duce an oversampling step allowing to generate new points in the

latent space based on the limited number of the reference ones. An

additional step includes the attention-based sequence-to-sequence

model to correct errors in generated notations.

To assess the quality of resulting structures, we introduce a post-

processing step allowing to compute properties of the generated mol-

ecules directly from the structure. These extra steps provide a

comparative analysis over scaffolds, fingerprints, descriptors, and

functional groups to assess the quality of the generated molecules.

We confirm that generated unique SMILES have a similar distribution

of structural features and molecular descriptors.

We also went further with such an assessment by performing a

computer simulation at all-atom level. This simulation modeled a set

of aqueous solutions of one of newly generated compounds at differ-

ent concentrations. This part of the study is intended to be a com-

puter experiment instead of the real one and serves as a sanity check

of the aqueous solubility prediction. The general pipeline is shown in

Figure 1. Below, we discuss the pipeline in more detail.

2 | METHODOLOGY

In the core of our architecture is the idea of having a continuous

space to represent small organic molecules. To create such mapping,

we use the AE network, consisting of two subnets—encoder and

decoder, as shown in Figure 2. The mapped embedding space allows

one to continuously change representation vector in order to sample

new candidate molecular structures.

The predictor models take embedding vector as input to predict a

set of metrics (further we discuss a prediction of aqueous solubility).

Finally, we add an attention-based sequence-to-sequence model with

long short-term memory cells to “spell-check” possible errors in the

generated notations.

2.1 | Molecular representations

There exist various chemical representations helping encode spatial

molecular structures by compact one-line notations; the most popular

among them are SMILES. The SMILES form carries all the necessary

information to calculate most of the drug-likeness metrics (H-bond

donors, acceptors, molecular weight, etc.), except lipophilicity logP

and aqueous solubililty logS. A SMILES string itself cannot be fed into

neural network and needs to be expressed in a numerical form. It is

convenient to represent categorical data (like SMILES elements) via

so-called one-hot encoding which in the case of SMILES is a matrix

(N by M) of 0's and 1's. N is a size of dictionary of valid SMILES ele-

ments (like C, c, @, O, brackets, etc.), while M runs over the characters

of the SMILES string. One such example is illustrated in Figure 3,

where a spatial representation of ascorbic acid (also well known as

F IGURE 1 The proposed system covers multiple steps of the early-stage drug discovery. Datapoints are generated directly in continuous
space with regards to the reference dataset with immediate assessment of properties. The SMILES is decoded, corrected, and screened by a drug-
likeness filter and molecular dynamics simulation

F IGURE 2 The system architecture consists of the generative part (encoder and decoder), the error correction model (Seq-to-Seq), a set of
properties predictors, and the sampler of new datapoints in the embedding space

748 DRUCHOK ET AL.



vitamin C) along with its molecular formula, SMILES string, and one-

hot matrix are shown. We consider the SMILES strings not longer

than 60 elements applying zero-padding for the shorter ones. We also

limited the dictionary size to only the elements encountered within

the train and evaluation datasets (found 58 unique elements).

2.2 | What datasets are available

In this research, we use the eMolecules database81— a set of commer-

cially distributed chemicals—as a large list of valid SMILES strings to

train AE.

For the property prediction, we focus on the aqueous solubility

and compiled our dataset from a series of open sets published by

Huuskonen,82 Hou et al.,83 Delaney,84 and Mitchell.85 Additionally,

the overall solubility dataset was extended by transforming SMILES

strings to a canonical form, which in total yielded ≈4300 solubility

labels for SMILES strings not longer than 60 elements. All solubilities

are presented in the form of the so-called log solubility—logS, which is

the decimal logarithm of a maximal soluble concentration of solute in

water, expressed in mol/L.

Public datasets often combine the data obtained in different labo-

ratories by different techniques. This might sufficiently limit the qual-

ity of the data as a good training set. Regarding the solubility

prediction case, it is instructive to review a solubility challenge and

discussion of its results in refs. [86, 87].

2.3 | Model design

We decided to use a fully deterministic AE. The design of the AE was

shaped during a series of grid-search experiments. The AE architec-

ture was tuned by changing the number of layers (from 4 to 12) and

their types (fully connected (FC) and convolutional). The number of

neurons in each FC layer varied from 2 (at the bottleneck layer uniting

encoder and decoder parts) to 3500 at the encoder/decoder hidden

layers. The number of convolutional layers varied from 2 to 10 with

different number and shapes of filters as well. The addition of con-

volutional layers improved the performance of the AE in comparison

to the one based on purely FC layers. The experiments with activation

functions (sigmoid, ReLU, PReLU) favored ReLU, except the sigmoid

activation at the output layer. We also tested the application of drop-

out, however, the optimal performance was achieved without

it. Further, we discuss the final architecture of the AE (see Appendix

and Figure A1 therein for the detailed architecture). The encoder, first

part of the AE, consists of four convolution layers, followed by a FC

layer. The output of the encoder is considered as a latent SMILES rep-

resentation. The decoder, second part of the AE, is aimed to decode

latent representations back to original SMILES strings. It, symmetri-

cally, consists of an FC layer and four convolutional ones.

The predictor takes the latent representation as an input and is

trained to match it against the aqueous solubility dataset. The predic-

tor consists of four residual blocks and four FC layers as shown in

Figure A2 in Appendix. The predictor's layers gradually decrease their

size and the last one outputs a single number, which is considered as

a solubility prediction.

We used the ADAM optimizer for training both the AE and pre-

dictor, adjusting only the learning rate within the range of

10−3 � 10−5. In the case of the AE, optimization was aimed to mini-

mize the loss function in the binary cross entropy form. The predic-

tor's loss function is formulated as a mean square error. The AE is

considered to be properly designed and trained if its inputs and out-

puts mutually coincide on a high rate, while the predictor's aim is to

reproduce solubility. Notably, the above scheme allowed us to build

other predictors on top of the existing latent space and predict other

properties in parallel to the aqueous solubility.

2.4 | Oversampling in the continuous space for the
new structures

The particular aim of this study is in the generation of new com-

pounds. The above architecture allows operating with discrete

SMILES notations in a continuous latent space giving infinite possibili-

ties of choosing arbitrary vectors in this space. This may lead to either

correct chemical structures, or structures that are chemically incorrect

or difficult to synthesize. Keeping this in mind, we approach the prob-

lem not by a simple random selection of latent vectors, but by using

“smarter” linear combinations of vectors belonging to existing (cor-

rect) structures.

F IGURE 3 Ascorbic acid as molecular formula, SMILES string, one-hot matrix, and a spatial structure of a molecule represented by sticks.
Carbons in the 3D representation are shown in gray, oxygens—in red, hydrogens—in white
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Indeed, the random selection of vectors yields almost 100% faulty

result. Therefore, we used the SMOTE (synthetic minority

oversampling technique) approach88 adopting its implementation from

the Imblearn library.89 SMOTE generates new synthetic data by

selecting pairs of original samples close in the feature space and pick-

ing random points along the lines between these paired samples.

After the latent vectors for new structures are sampled from the

continuous space, they need to be decoded to SMILES strings. The

decoder outputs are in the one-hot encoding form and are converted to

SMILES strings, however, an additional postprocessing is needed over

the newly generated strings: many of them might not be chemically cor-

rect. As a harsh recipe one can test SMILES strings against the RDKit

library90 and drop the incorrect ones. However, to increase the sampling

rate, we introduced an error correction scheme, which is discussed next.

2.5 | Error correction for generated SMILES strings

In the experiments by Gómez-Bombarelli et al,72 from 70% to less

than 1% of the generated SMILES strings correspond to valid mole-

cules. Therefore, one would have to overgenerate, to obtain a certain

number of valid new molecules. This becomes crucial when a limited

number of molecules with desired properties are at one's disposal to

use as the base for SMOTE. Thus, to efficiently exploit the earlier

described pipeline, we need to find a way to increase the number of

valid SMILES strings in the AE output.

The problem of incorrect Autoencoder outputs can be

decomposed into two subproblems. First, the latent space learned by

the AE is too sparse and heterogeneous, so that the latent vector cho-

sen for direct decoding most likely represents an invalid SMILES

string. It could be solved by enforcing certain restrictions on the latent

space, for example, by training an additional neural network to classify

latent vectors into those which would decode into valid molecules

and those which would not. Second subproblem roots in the brittle

nature of string representations—one incorrect symbol could lead to a

completely different molecule, while one misplaced probability in the

output from the final layer of the decoder would not affect the loss

function considerably. We chose to focus on the latter part which by

its essence resembles a spell-checking task in natural language

processing. The conventional spelling correction algorithm is not

applicable in the case of newly generated SMILES strings—there is

neither a full vocabulary of all correct strings nor a table with the most

common errors in generated SMILES strings along with probabilities,

which are required for the conventional spell checking algorithm.

Thus, we decided to turn to ML and train a neural network which

would be capable of syntactic error corrections in SMILES strings and

could be used as a postprocessing to the AE outputs.

2.6 | Error correction model

Error correction in SMILES strings can be framed as a standard

sequence-to-sequence learning problem, which is traditionally solved

with attention-based encoder-decoder models.91,92 To exploit the

sequential nature of strings, both the encoder and decoder are built of

LSTM (long short-term memory)93 cells with the hidden state of size

512. The encoder transforms the input SMILES string X into a

sequence of hidden states (h1, h2, ..., hjXj), while the decoder generates

one symbol from SMILES characters dictionary at a time in the output

SMILES string Ŷ. Formally, the model learns transitions

a :X) F512,b : F512 ) Ŷ

such that a, b = argmin(Y − b(a(X)))2, where Y is a target SMILES string.

The choice of ŷt is conditioned on the previous symbol ŷt−1 and on

the compressed X in the form of dynamically created context vector

ct. It is computed as a weighted sum of the encoder's hidden states hi:

ct =
XjXj

i=1

atihi

whose weights at are found by an attention mechanism:

ati = softmax etið Þ,et =A ŷt−1,st−1ð Þ,

where A is an alignment model, implemented as feed-forward neural

network of one fully-connected layer, and st−1 is the previous hidden

state of the decoder. A is jointly trained with the rest of the model.

Following the best natural language processing practices, symbols

from SMILES strings are converted into embeddings,94 learned by the

trainable embedding layer in the model. The model is trained by mini-

mizing the negative log-likelihood between the predicted SMILES

string Ŷ and the (correct) target SMILES string Y. The training process

runs for 70 epochs, making use of teacher forcing,95 which suggests

using the real target outputs as each next input during training. The

alternative is using the decoder's own guess as the next input. Those

two approaches are alternated during the training. Figure 4 shows the

schematic architecture and training procedure of the error correction

model.

2.7 | Error correction data

Since the initial intention was to correct errors made at the decoding

stage, we collected all SMILES strings produced by the AE and tagged

by the RDKit library as invalid, and the corresponding original valid

strings. This gave us the dataset for the AE error correction, consisting

of ≈300,000 SMILES pairs. Obviously, the dataset formed in the way

described above is biased and incomplete, and the model trained on it

would make little use for other SMILES-related tasks. Inspired by the

successful application of denoising AE96 to feature extraction, we also

experimented with SMILES strings with added random noise. By ran-

dom noise we mean operations of replacement, deletion and insertion

of random symbols from the dictionary in the input SMILES string fol-

lowing a predefined distribution. In that case, the model's input is a
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SMILES string corrupted with random noise and the model has to

learn how to convert them to the original valid string. That approach

encouraged the model to construct more robust hidden representa-

tions of molecules and learn a SMILES language model, which would

be closer to the real one. Thus, filling the gaps in the AE knowledge of

the SMILES language model and correcting errors, caused by them.

We prepared two datasets with different nature of errors in

SMILES strings: first, with random noise, the second one with AE gener-

ated errors. Two attention LSTM models were trained on these datasets

correspondingly. Further on, for the sake of brevity, we will refer to

those two models as random noise model and AE noise model.

2.8 | Molecular dynamics details

Besides the quality assessment of the predictor on the solubility task,

we performed a series of molecular dynamics simulations for one of

newly generated compounds—COCC(O)C(CC)CO. This part of the

study is intended to test its predicted logS value via the computer

experiment. The choice of the test compound is motivated by two

arguments. First, its chemical structure is relatively simple, thus, one

can expect that typical interaction forcefields describe it appropri-

ately. Second, a moderate solubility of this compound allows us to

simulate both concentration ranges (below and above the solubility

limit) without extensive CPU-loads.

We prepared five mixtures of water molecules and molecules of

the chosen compound at different concentrations. The water was rep-

resented within the SPC/E model,97 while the solute molecules were

constructed within the OPLS-AA forcefield.98 The Lennard–Jones

parameters for unlike sites were calculated by using the Lorentz–

Berthelot mixing rules. All particles were allowed to move freely

across the cubic unit cell with the periodic boundary conditions

applied. The cell sizes Lx = Ly = Lz varied within the range of 67–93 Å,

depending on the solution composition.

The molecular dynamics simulations were performed with the use

of the DL_POLY package.99 In all simulations, we used the NPT

ensemble with the pressure of 1 bar and temperature of 298 K con-

trolled by the Nose–Hoover barostat and thermostat in the

Melchionna's implementation.100 The long-range Coulomb interac-

tions were treated within the smooth particle mesh Ewald technique,

while for the short-range interactions, the cut-off distance of 9 Å was

introduced. The equations of motion were integrated within the stan-

dard leapfrog scheme with a time step of 0.002 ps.

3 | RESULTS

3.1 | AE loss convergence

First, we ran a few tests to study how the AE convergence depends

on the size of the train dataset. For this purpose, we prepared train

datasets consisting of ≈10,000, 50,000, 100,000, 200,000, 500,000,

and 1,000,000 SMILES strings. The size of the test dataset of 20,000

entities remained unchanged over this benchmark. The summary plot

with the dependence of the losses on the train dataset size is shown

in Figure 5. The values for 500 k and 1 M cases show a relatively small

difference in the train-test gap. Hence, we further decided to use a

train dataset with 500 k entities. After the AE is trained, it constitutes

the latent space and we can proceed with the generation and error-

correction of new SMILES strings.

3.2 | Error correction evaluation

The error correction models were evaluated on three types of input

data (all taken from the previously unseen by models test sets with the

size of ≈15,000 SMILES pairs): valid SMILES strings—to check how

F IGURE 4 The architecture of the
attention-based sequence-to-
sequence error correction model. The
unrolled encoder is pictured with black
rectangles, the unrolled decoder –
with blue
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accurate the model reconstructs the input strings; SMILES strings with

AE noise and SMILES strings with random noise—to test the model's

ability to correct errors. The results are expressed by two numbers:

1. How many output SMILES strings coincide with inputs in case

of the reconstruction task or with original uncorrupted strings in case

of error correction task.

2. How many strings outputted by the model are valid as verified

by the RDKit library.

The performance of models is summarized in Table 1.

The model trained on AE noise seemingly learned the types of AE

errors and the easiest way to correct them—by building direct map-

pings, not determining the underlying rules which tell how to con-

struct valid strings. AE errors are deeply incorporated into the

SMILES' structure itself and in dependencies between the symbols,

therefore, the underlying language model is much skewed. The model

trained on AE errors only is not capable of grasping the real language

model from the valid SMILES strings, because the two language

models are too different.

3.3 | Statistics on generated SMILES strings

For the generation purposes, we randomly selected a subset of

≈190,000 SMILES entities from the eMolecules set,81 converted them

into the corresponding latent vectors, and ran the SMOTE algorithm to

produce 95,446 new latent vectors. Not all of the generated vectors

corresponded to grammatically correct SMILES strings. Then, 39.7%

(37890) of them were discarded by chemical parsing with RDKit due to

unrealistic aromatic systems or incorrect atomic valences. 60.3%

(57556) of the generated strings led to correct molecules.

Chemically incorrect generated SMILES strings were then revised

and fixed by the error correction models. Out of 37,890 discarded

strings, 12,040 (31.8%) were corrected successfully.

One of the important questions here was related to the novelty of

the generated and corrected molecules. Almost all corrected SMILES

strings were unique (99.8% or 12,024 out of 12,040). Out of 57,556

valid molecules generated by the AE, 89.8% (51,720) were identical to

molecules in the source dataset. They were excluded from the target

data analysis as we are interested only in a novel chemical matter from

the same distribution. As a result, there were 17,860 unique novel mol-

ecules in total—5836 from the AE (generated dataset) and 12024 from

the error correction models (corrected dataset).

Unique generated and corrected compounds were searched within

the ChEMBL101 and PubChem102 databases to verify their novelty.

About 95% of generated and 98% of corrected structures were not

found in ChEMBL. The search in PubChem yielded a lower but still solid

fraction of novel structures: 72% of generated and 81% of corrected

SMILES strings were not encountered in this database. These numbers

demonstrate a high level of uniqueness of the compounds obtained.

Overall, based on the above numbers, the application of two error

correction models (trained on AE noise and on random noise)

increased by 20% the number of valid SMILES strings initially gener-

ated with the SMOTE technique. Taking into consideration the fact

that out of all correctly generated SMILES strings 10.2%(5836) were

unique, 12,040 unique corrected strings accounted for 67% for all

newly generated samples. So error-correction models do not simply

transform all invalid SMILES strings to the closest valid ones, which

were seen by them during training.

Worth mentioning that two models do not always correct the

same SMILES strings. Therefore, we can justify the use of two models

for error correction, where the first knows how to fix very specific

types of errors while the second is capable of more substantial and

“creative” changes in invalid strings.

3.4 | Structural similarity and synthetic
accessibility

3.4.1 | Scaffold analysis

The set of 5836 newly generated structures contained 3945 unique

scaffolds (a scaffold is a part of a molecule after removal of nonring

substituent, it is the largest chain for molecules without rings). For

comparison, the source dataset of 189,936 molecules used for the

SMOTE sampling procedure contained 58,229 scaffolds. The overlap

between the generated and the source datasets was 2558 scaffolds

(64.8% of generated scaffolds); the overlap between generated and

corrected sets was 742 scaffolds (8.8% of corrected or 18.8% of gen-

erated scaffolds); the overlap between corrected and source datasets

was 2594 scaffolds (30.8% of corrected scaffolds). These numbers

illustrate that the protocol generates novel molecules and corrects

erroneous ones within a similar distribution and does not mirror the

sampling set too closely.

3.4.2 | Substructure features comparison

We calculated the following substructural features for the three

datasets: number of rings in a molecule, presence of spiro rings, het-

erocycles, some biogenic elements, and halogens. The strings gener-

ated by the AE have the features distribution similar to those of the

source class, although not exactly the same. Also, the strings,

corrected by the Sequence-to-Sequence model, show the distribution

close to the ones of the source and generated datasets, although hav-

ing some specific differences, such as higher amount of structures

TABLE 1 Performance comparison of error correction models

Random noise model AE noise model

Task
Same as
target Valid

Same as
target Valid

[% of SMILES strings in the model output]

Reconstruction 87 93 37 58

Random errors 66 83 16 36

AE errors 14 44 43 68
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with one and two rings and lower amount of structures with multiple

rings and heterocycles. Substructure features in dataset percentages

are compared in Table 2.

3.4.3 | Common functional groups

An algorithm to identify functional groups in organic molecules103 was

used for comparison of the most common functional groups in datasets.

Functional groups were ranged from the most to least frequent ones and

represented as the SMILES Arbitrary Target Specification (SMARTS).

SMARTS is a language for specifying substructural patterns in mole-

cules.104 In particular, Figure 6 shows the most common substructures in

the three datasets: the source, the novel generated, and the corrected

SMILES dataset. Substructures are highlighted in red and presented as

parts of novel generated SMILES strings. These examples are arranged

by descending percentages within the dataset of novel generated mole-

cules. These results indicate that initial strings of the source dataset, gen-

erated by the AE and the ones after the error-correction, have similar

distributions of functional groups, again confirming that both novel and

corrected datasets propagate over the same chemical space.

3.4.4 | Common molecular descriptors comparison

Properties of generated, corrected, and source data molecules were

compared, using common molecular descriptors (molecular weight,

TABLE 2 Comparison of substructure features between source,
generated, and corrected class molecules

Feature Source, % Generated, % Corrected, %

No rings 1.66 2.65 2.06

1 ring 7.74 7.88 9.04

2 rings 22.35 19.93 24.56

3 rings 32.33 31.6 31.75

4 rings 28.08 29.49 26.27

>4 rings 7.84 8.45 6.31

Spiro rings 2.01 1.99 1.94

Heterocycles 80.4 77.9 73.62

No N,O,S 0.48 0.98 1.0

Has N 94.06 92.37 91.74

Has O 93.25 92.3 91.51

Has S 39.25 37.56 35.95

Halogen 38.57 37.32 39.26

cnc

CF

CN(C)C

13.2% 12.9% 11.9% cOC 9.4% 7.0% 8.1% cCl 5.4% 5.4% 5.7%

3.6% 3.9% 3.5% cO 1.5% 3.3% 2.0% cNC(C)=O 3.3% 3.3% 3.0%

2.9% 2.8% 2.8% csc 3.2% 2.7% 2.8% cF 2.7% 2.5% 2.6%

F IGURE 6 The most common
substructures in datasets. The legend
format: the substructure SMARTS
code, percentage of occurrences in the
source SMILES dataset, percentage of
occurrences in the novel generated
SMILES dataset, percentage of
occurrences in the corrected SMILES
dataset. Substructures are highlighted
in red and presented as parts of novel
generated SMILES strings
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atom-based logP,105 and topological surface area). Topological

polar surface area (TPSA) of a molecule is defined as the surface

sum over all polar atoms including their attached hydrogen atoms.

logP is the most commonly used measure of lipophilicity. This is the

partition coefficient of solute between an aqueous and lipophilic

phases, usually octanol and water. Results are shown in Figure 7.

One can see that the three compared datasets demonstrate similar

distributions.

Synthetic accessibility score (SAS) as a number between 1 (easy

to make) and 10 (very difficult to make) was calculated according to

ref. [106]. This method uses historical synthetic knowledge obtained

by analyzing information from millions of already synthesized

chemicals and considers chemical structure complexity. The score

may be used to rank molecules generated by theoretical approaches

for an organic synthesis. Resulting distributions are presented in

Figure 7, bottom right plot. Mean values of SAS of source, novel

generated, and corrected molecules are 2.5, 2.6, and 2.5 respec-

tively, indicating that all they are relatively easy to synthesize on

average.

3.5 | Solubility prediction

During the training of the predictor, we used an early stopping proce-

dure to prevent overfitting. The quality of predictor's solubility recon-

struction is visualized in Figure 8, reflecting how good the

experimental values from train and test datasets are reproduced.

Obviously, the perfect reconstruction is achieved if the predicted logS

values fit the function y = x (shown by the red lines). The solubility

reconstruction within the train dataset is shown on the left plot of the

Figure 8, and the corresponding coefficient of determination R2 for

logS is equal to 0.97. The reconstruction within the test dataset (right

plot) shows a certain degree of scatter around the ideal case with the

coefficient of determination R2 = 0.84.

The difference between predicted and experimental logS values

usually does not exceed unity (see the bottom plot in Figure 8), which

in plain concentration units corresponds to an error of one order.

Partly, this is due to a relatively small solubility dataset of only 4300

values. Nevertheless, even a rough estimate can be often helpful to

categorize a compound with respect to a degree of its solubility.

F IGURE 7 Comparison of probability density functions of molecular descriptors (molecular weight, logP, TPSA) and synthetic accessibility
score for the source dataset, novel generated and corrected molecules
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Similar plots comparing experimental vs. predicted logS are also

reported in refs. [45, 87]. In particular, ref. [45] provides a set of coef-

ficients of determination for different regression approaches. Our

estimation of R2 = 0.84 is slightly higher than the numbers provided in

ref. [45], however, we want to stress here that the direct comparison

is appropriate only when the datasets are the same in both cases.

3.6 | Molecular dynamics simulation as a
solubility test

We also performed a short series of all-atom computer simulations as

an additional test. The solubility in computer simulations is usually

measured via free energies calculations either by the thermodynamic

integration or averaging over the path between thermodynamic states

(see, e.g., refs. [107–109]). However, these approaches require

intense simulations for numerous intermediate states and, therefore,

are CPU-consuming. So, we focused on a more qualitative task aiming

to check whether a particular solvent-solute composition reveals any

separation trends with respect to a predicted solubility limit. There-

fore, this part is rather intended to illustrate the change in the solute

aggregation trend, not to find the exact solubility limit.

As a test case, we picked one of newly generated compounds,

namely COCC(O)C(CC)CO (shown in Figure 9). According to the pre-

dictor, its log-solubility logS is −0.26, which corresponds to the con-

centration of ≈ 0.55 mol/L.

For this purpose, we “cooked” five all-atom mixtures consisting

of solvent molecules H2O and molecules of the solute C7H16O3. The

simulated mixtures differed by the solvent-solute compositions.

Namely, the compositions and corresponding solute concentrations

are collected in Table 3. One can see that the solute concentration

gradually increases over the list of compositions. For the low-

concentration compositions (below the solubility limit of 0.55 mol/L),

we expect a “no-separation” regime, contrary to a “separation”
regime for the cases with concentrations above the solubility limit.

The compositions with moderate concentrations close to the thresh-

old logS might show a regime transition.

Below, we discuss the instantaneous configurations of the above-

defined systems. Each of the results is presented as a pair of snap-

shots, solely showing the simulation unit cell with only H2O or

C7H16O3 molecules. The snapshots in the top row of Figure 10 show

H2O molecules, bottom row—C7H16O3 molecules.

In the case of 0.11 mol/L, the solvent (top left snapshot in

Figure 10) and solute (bottom most left snapshot) molecules are fully

distributed over the simulation box, revealing no aggregation of the

solute. For the sake of conciseness, we did not show the snapshots
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F IGURE 8 logS as reproduced on the train (left) and test (right) solubility datasets. The line y = x marking the “ideal reconstruction” is plotted
to guide the eye

F IGURE 9 Spatial structure of a molecule COCC(O)C(CC)CO
represented by sticks. Carbons are shown in gray, oxygens—in red,
hydrogens—in white

TABLE 3 The compositions and corresponding concentrations of
the simulated systems

Number of molecules Solute concentration

H2O C7H16O3 (mol/L)

20,000 10 0.03

10,000 20 0.11

10,000 100 0.5

Solubility limit 0.55

10,000 400 1.7

10,000 2000 4.2
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for the lowest concentration of 0.03 mol/L, because they resemble

the 0.11 mol/L case.

In the second left column of Figure 10, we show the system with

the solute concentration of 0.5 mol/L. This concentration is slightly

below the predicted solubility limit of 0.55 mol/L. Again, top figure

shows H2O, bottom figure—C7H16O3 molecules. One can notice that

the solute is well distributed over the box and only begins to aggregate.

In the third column, we show the system with the solute concen-

tration of 1.7 mol/L. This concentration is above the predicted solubil-

ity limit and reveals a separation trend, which agrees with our

solubility estimation.

The case of the highest concentration of the solute (4.2 mol/L) is

shown in the most right column of Figure 10. One can clearly see the

areas not occupied by H2O, as well as the areas not occupied by

C7H16O3. The actual composition is way above the solubility limit so

the separation is well manifested.

3.7 | Drug-likeliness

Let us now check the above compound COCC(O)C(CC)CO for the

drug-likeness. Drug-likeness is a qualitative concept used in drug

design. It can be assessed for any molecule, but it does not evaluate

its pharmacological effect. In Section 1, we have mentioned a number

of filters.51–55 All of them are based on simple metrics: the numbers

of H-bond donors and acceptors, molecular weight, polar surface area,

molar refractivity, solubility in water logS and octanol logP, fraction of

sp3 hybridized carbons, and number of rotatable bonds. The polar sur-

face area, molar refractivity, and logP can be calculated via the RDKit

library, for logS, we can use our solubility predictor, while the rest of

metrics are directly defined from a molecular structure. We list these

values in Table 4. The above-mentioned filter rules can be found in

the original papers, therefore, we just briefly summarize the

corresponding drug-likeness scores. So, the filters of Lipinski,51

Egan,53 and Veber55 report no violations for the compound and claim

it to be drug-like. The filter by Ghose52 does not approve the com-

pound for two reasons: (i) its molecular weight of 148.2 g/mol does

not fit the range of [160:480] and (ii) molar refractivity of 38.75 is

beyond the range of [40:130]. To sum up, three filters approved the

compound, the Ghose filter flags two violations, but the failing values

are just slightly below the qualifying limits. The properties predicted

here resonate with the Bioavailability radar, proposed by Daina

et al.110 in their SwissADME tool.

4 | CONCLUSIONS

The use of DNN-pipeline to map the discrete molecular representa-

tion (i.e., SMILES strings) into continuous vector space proved to be

efficient step for predicting properties from compressed structure

representation, generation of novel structures via varying the repre-

sentation vector, or clustering of known ones directly in the vector

space.60,72 Trained end-to-end such models result in the efficient

structure of the chemical space where molecules with different prop-

erties belong to different parts of it.

In practice, a known set of small molecules is just a sparse fraction

of exponential space of possible ones.7 As a result, a random vector in

a corresponding continuous space may not necessarily represent a

F IGURE 10 The snapshots of the
simulation box, showing water H2O
(top row) and C7H16O3 (bottom row)
molecules as wireframes. Carbons are
shown in gray, oxygens—in red,
hydrogens—in white. The solute
concentrations are denoted below
each column

TABLE 4 Drug-likeness metrics for the compound COCC(O)C
(CC)CO

Molecular weight 148.20 g/mol

Number of H-bond acceptors 3

Number of H-bond donors 2

Number of heteroatoms 2

Fraction of sp3 hybridized carbons 1.00

Number of rotatable bonds 5

Number of rings 0

Topological polar surface area 49.69 Å2

Molar refractivity 38.75

logS −0.26

logP 0.01
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valid chemical structure. This becomes even more severe in case of

end-to-end training on limited training sets of structures along with

given properties. Hence, efficient sampling in a continuous space and

correction of resulting structures becomes as important as a search

for an optimal mapping from discrete to continuous representation.

In this report, we focus on designing a multi-stage pipeline of several

neural networks to generate novel molecular structures with desired

properties and a testing pipeline to check the chemical validity of gener-

ated structures. Rather than refining a single end-to-end model, our pipe-

line works with a number of simple and readily available architectures

that complement each other and could be trained separately on genera-

tion, prediction, and error correction tasks. Here, the generative block

uses the AE network that is designed and trained to map generic discrete

SMILES into a continuous vector space and reconstruct structures from

the points in that space. Error correction block is built upon the

attention-based sequence to sequence model that is trained indepen-

dently on a set of corrupted SMILES strings. Finally, properties prediction

is done via models trained on continuous representations of a reference

datasets. The generation of new structures is done via an oversampling

in the embedding space of a reference dataset that contains molecules

with particular properties of interest and may be limited in size.

We test our pipeline in a number of experiments and show that it

leads to good generation and prediction qualities for novel structures.

We show that the error correction block allows increasing by 67% the

number of valid and unique molecular structures in the output of basic

AE model. The prediction model trained directly on the embeddings

of the reference dataset results in the state of the art estimation of

aqueous solubility.

In our analysis of structural similarity (i.e., distributions of scaf-

folds, substructure features, functional groups, and molecular descrip-

tors) and synthetic accessibility of reference and generated structures,

we showcase that unique structures span the same part of the chemi-

cal space. Finally, as a sanity check, we performed a molecular dynam-

ics simulation to confirm our predictions for the aqueous solubility of

generated molecules.

To summarize, our pipeline allows generating new valid chemical

structures in seconds, predict their properties without running laboratory

tests, and examine these compounds with various drug-likeness filters.
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APPENDIX: ARCHITECTURES OF THE AUTOENCODER AND

SOLUBILITY PREDICTOR

The autoencoder consists of two sub-networks—encoder and

decoder (Figure A1). Both the encoder and decoder use convolution

and fully-connected type layers. The dimensions of the layers are

chosen to maintain a constant number of neurons per layer that

allows applying a residual technique when a layer output is mixed

with outputs of subsequent layers by skip connections and helps to

improve the network convergence. The solid arrows denote the reg-

ular weighted connections, the dotted ones show the skip connec-

tions. The outputs after each layer are passed through the ReLU

activation functions. The output of the Encoder is a vector that can

be considered as a SMILES latent representation. This vector is fur-

ther fed into the decoder, which then outputs the SMILES string.

The latent vectors are also fed into the structure-to-property pre-

dictor. In our case we trained the predictor for an aqueous solubility.

F IGURE A1 The architecture of the autoencoder. The upper
chart presents the encoder: differentiable connections between layers
are denoted by black solid arrows, while the dotted ones denote
nonweighted addition with the appropriate reshape, followed by the
activation function of the ReLU or sigmoid type. Each convolution
layer is characterized by height (h), width (w), and number of channels.
The bottom chart shows the decoder scheme with the same notation
and color conventions
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The predictor's architecture consists of four residual blocks and four

FC layers. As seen in Figure A2, the residual blocks unite four FC layers

each. The regular weighted connections are denoted by solid arrows.

In contrast to the plain FC network, the intermediate vectors are

added to subsequent FC outputs (denoted by dotted arrows). The pre-

dictor outputs a single value, being treated as a solubility prediction.

F IGURE A2 The architecture of
the predictor. The upper chart shows a
residual block: differentiable
connections between FC layers are
denoted by solid arrows, the dotted
arrows denote nonweighted addition,
then followed by activation function of
the ReLU type. The bottom chart
presents the general scheme of the

predictor: four residual blocks are
followed by four fully connected layers
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